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Abstract. Using the persistent current I induced by an Aharonov-Bohm flux in square lattices with random
potentials, we study the interplay between electronic correlations and disorder upon the ground state (GS)
of a few polarized electrons (spinless fermions) with Coulomb repulsion. K being the total momentum,
we show that I ∝ K in the continuum limit. We use this relation to distinguish between the continuum
regimes, where the lattice GS behaves as in the continuum limit and I is independent of the interaction
strength U when K is conserved, and the lattice regimes where I decays as U increases. Changing the
disorder strength W and U , we obtain many regimes which we study using the map of local currents carried
by three spinless fermions. The decays of I characterizing three different lattice regimes are described by
large U perturbative expansions. In one of them, I forms a stripe of current flowing along the axis of
the diamagnetic Wigner molecule induced by large electronic correlations. This stripe of current persists
in the continuum limit. The quantum melting of the diamagnetic molecule gives rise to an intermediate
“supersolid” regime where a paramagnetic correlated pair co-exists with a third particle, before the total
melting. The concepts of stripe and of supersolid which we use to describe certain regimes exhibited by
three spinless fermions are reminiscent of the observations and conjectures done in other fields at the
thermodynamic limit (stripe for high-Tc cuprates, supersolid for Helium quantum solids).

PACS. 71.10.-w Theories and models of many-electron systems – 73.21.La Quantum dots – 73.20.Qt
Electron solids

1 Introduction

1.1 Motivations

Let us first give some reasons which have motivated this
study of a few polarized electrons (spinless fermions)
and of their persistent current in two dimensional dis-
ordered lattice models. In the last decade, the conduc-
tance of two dimensional electron gases (2DEGs) have
been measured [1] at low temperatures as a function
of their densities. Using 2DEGs created in Ga-As het-
erostructures or Si-MOSFETs at densities smaller than
those used for studying the weak-localization correc-
tions to the Drude-Boltzmann conductance, a “two di-
mensional metal-insulator transition” has been observed.
When the temperature increases, the conductance does
not change at a certain critical density, while it increases
at smaller densities and decreases at larger densities. The
increase corresponds to the insulating phase and the de-
cay to the metallic phase. In Ga-As heterostructures or
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Si-MOSFETs, there is a more or less important disorder
due to charged impurities and rough interfaces. In pres-
ence of disorder, a 2DEG can be insulating for two rea-
sons: either because it forms a Fermi glass with Anderson
localization at high densities or because it forms a pinned
Wigner crystal at low densities. Since this transition is
observed at low densities, it was suggested [2] that the
low density insulator would be a pinned Wigner crys-
tal, which would give an unexpected metal when it melts
above the critical density. While a 2d insulator is expected,
the observation of a 2d metal remains unexplained. If one
goes [3] from the Fermi glass towards the pinned Wigner
crystal via a 2d metal as the density decreases, the ex-
istence of a new metallic phase between two insulating
phases of different nature becomes unavoidable. And in-
deed, exact numerical studies of small disordered clusters
have shown [4–7] the trace of an intermediate regime con-
sistent with this hypothesis.

Subsequent numerical studies of similar systems have
shown [8,9] that an intermediate regime persists with-
out disorder. The possibility of having some hybrid phase
made of a quantum solid co-existing with delocalized de-
fects, was suggested in references [8,9], in analogy with the
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“supersolid” proposed long ago by Andreev and Lifshitz
for quantum Helium solids in three dimensions [10,11]. Us-
ing a similar analogy with Helium physics, but assuming
macroscopic inhomogeneities of the carrier density due to
an inhomogeneous substrate potential, a qualitative expla-
nation of the dependence of the resistance as a function of
a parallel magnetic field and of the temperature has been
discussed in reference [12].

For a simple 2DEG without a random substrate, to
understand how the ground state (GS) changes when one
varies the carrier density remains a challenge despite a few
decades of efforts. The simplest model for a 2DEG is a con-
tinuum Hamiltonian Hc having three parts: one body ki-
netic terms, a two body Coulomb repulsion and a one body
potential describing the effect of the positive ions. The last
potential is necessary to have a stable system of electrons
because of Coulomb repulsions. However, if one takes pe-
riodic boundary conditions (BCs) and a uniform jellium
for the positive ions, the corresponding potential becomes
a constant term. The scale of the one body quantum ef-
fects is given by the Bohr radius aB = �

2/me2, e and m
being the electronic charge and mass. The strength of the
Coulomb repulsion depends on the radius a of a circle
which encloses on the average one electron. Measuring the
energies in rydbergs (1 Ry = me4/2�

2) and the lengths in
units of a, the continuum 2DEG Hamiltonian for N elec-
trons reads

Hc = − 1
r2
s

N∑

i=1

∇2
i +

2
rs

∑

1≤i<j≤N

1
|ri − rj | + const., (1)

which only depends on a single scaling ratio

rs =
a

aB
(2)

when N → ∞. We neglect the spin degrees of freedom,
considering fully polarized electrons (spinless fermions).
Even in this simpler case, the interplay between Coulomb
repulsion and the kinetic energy is a complicated issue.
When many electrons are inside the quantum volume a2

B,
rs is small and the 2DEG is a Fermi liquid, with a Fermi
energy much larger than the Coulomb energy. When rs is
large, the volume per electron a2 is large compared to a2

B,
and one has an electron solid (Wigner crystal) with weak
quantum effects. Between those two limits, the nature of
the ground state remains unclear.

From Quantum Monte Carlo studies, it is generally
believed that there is a single first order liquid-solid tran-
sition. However this result is not free of certain assump-
tions, because of the well known “sign problem” of the
Monte Carlo methods applied to fermions. One reason to
question the existence of a single transition comes from
general considerations about Landau theory of phase tran-
sitions and estimates of interface energies. According to
reference [13], a single first order transition is ruled out
because a macroscopic phase separation between a liquid
and a solid is unstable. A way to fix the sign problem of the
Monte Carlo approaches consists in imposing the GS nodal
structure. Using a fixed node approach, two nodal struc-
tures (a Slater determinant of plane waves for the liquid,

of localized orbitals for the solid) have been compared [14],
giving rW

s ≈ 37 for the critical density at which the tran-
sition occurs between the two assumed nodal structures.
However, one cannot exclude the existence of better nodal
structures giving lower GS energies when rs is neither
small nor large. And indeed, a third nodal structure has
been recently studied [15,16] in a fixed node Monte Carlo
approach, using Bloch waves in a variational attractive
potential located at the sites of the Wigner lattice instead
of free plane waves. This third nodal structure gives a
lower GS energy for 30 < rs < 80 and N → ∞, support-
ing the existence of a new hybrid liquid-solid phase. Since
one does not know the nodal structures, the Monte Carlo
methods make problem, and exact numerical studies of
small systems remain useful, despite the presence of large
finite size effects. They could provide a better understand-
ing of the low energy physics of a 2DEG, suggesting better
trial wave functions for fixed node Monte Carlo methods.
Or they could be the starting point of a finite size scal-
ing theory [17] for the interacting 2DEG. This is the road
which we have explored in a series of works [4,5,7–9,18,19]
and which we continue here.

To do an exact study, we take N electrons on a
L × L lattice for having an Hilbert space of finite size.
If N and L are small enough, the GS can be obtained
by Lanczos algorithm. Beside the finite size effects due to
the finite value of N , one has the lattice effects due to
the finite value of L. If the lattice effects are irrelevant,
the lattice GS behaves as the continuum GS. Notably, the
parameter rs remains a scaling parameter. If the lattice
effects are relevant, rs becomes meaningless, the scaling
behavior of the continuum limit ceases to exist for giving
rise to a new lattice physics. In the absence of disorder,
the lattice effects were studied [19] as a function of the
strength U of the Coulomb repulsion. The strength U∗
above which the lattice GS and the continuum GS become
different was given. The previous studies of a few particle
systems [8,9,19] give the following picture: If one increases
U for a sufficiently small number N , the Fermi system dis-
appears above UF to become a Wigner solid above UW ,
through an intermediate regime for UF < U < UW which
could be the microscopic trace of an “electron super-
solid”, before exhibiting strong lattice effects above U∗.
The Wigner solid without lattice effects can be described
by a continuum expansion where the small parameter
is 1/

√
rs. For a lattice model, rs = (UL/t)(1/

√
4πN),

where the hopping term t sets the scale of the lattice
bandwidth without interaction. Above U∗, the continuum
expansion breaks down and the Wigner solid with lat-
tice effects is described by a different expansion in power
of another small parameter t/U . If N is large, the lat-
tice effects can appear in the Fermi regime, a case which
we will not consider here. In reference [19], the different
regimes have been illustrated by numerical studies using
N = 3 spinless fermions in lattices of size L = 6 up to 18.
Three criteria where given to get U∗ and check for N = 3.
The numerical results have been reproduced by a contin-
uum 1/

√
rs expansion of the Wigner solid for U < U∗

and by a lattice t/U -expansion for U > U∗. Since it is
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possible to extend these expansions to an arbitrary num-
ber N of particles, the lattice threshold r∗s below which the
lattice effects are relevant was given in the thermodynamic
limit as a function of s/aB, s being the lattice spacing.
The purpose of this work is to use the persistent current
as a tool for characterizing the effect of a weak disorder
upon the four regimes which we have identified without
disorder. The considered system is a 2d torus pierced by
an Aharonov-Bohm flux. The random potentials remove
the various translational, rotational, and inversion symme-
tries exhibited by the non-disordered lattice. The persis-
tent currents display new regimes induced by the interplay
between electronic correlations and random potentials and
show more precisely the nature of the supersolid GS. In
the numerical part of this work, we take N = 3 spinless
fermions for lattices of sizes L = 6 and 9. When possible,
our numerical results are reproduced by analytical expan-
sions which can be generalized to more particles.

1.2 Summary of the main results

This paper is organized as follows: the disordered lattice
model is introduced in Section 2. The persistent currents
(local, total, transverse, longitudinal) yielded by an en-
closed Aharonov-Bohm flux Φ are defined in Section 3. A
relation between the expectation value 〈K〉 of the total
momentum and the current I is derived in Section 4 for
the continuum limit of a lattice of arbitrary dimension d.
Since this relation is only valid when the one particle states
of high momenta k are empty, the continuum and the lat-
tice regimes can be defined from the study of I. In the
continuum regime, I is invariant when K is invariant. In
the lattice regime, I can decay while K remains invari-
ant. In the continuum regime, the lattice GS behaves as
in the continuum limit and displays the same universal
scaling laws. In the lattice regime, the lattice GS becomes
different and there is no scaling.

Hereafter, we assume N = 3 spinless fermions and we
vary the lattice parameters t (kinetic energy), U (Coulomb
repulsion), W (disorder) and L (lattice size). In Section 5,
we review the 4 regimes obtained when U/t increases
without disorder (W/t = 0) for a sufficient value of L:
continuum Fermi system (U < UF ), continuum super-
solid (UF < U < UW ), continuum Wigner molecule
(UW < U < U∗) and lattice Wigner molecule (U∗ < U).
The effects of a very weak disorder are described in Sec-
tion 6. One gets 3 lattice regimes as U exceeds U∗. First
the disorder remains negligible and one gets a Ballistic
Wigner Molecule (BWM regime). When U reaches a value
Ustripe > U∗, a new lattice regime characterized by a
Coulomb Guided Stripe of Current (CGSC) is found when
Ustripe < U < Uloc. Above Uloc, one gets a Localized
Wigner Molecule (LWM regime). In the CGSC regime, I
flows along the axis of the Wigner molecule instead of
flowing along the shortest direction enclosing the flux,
as when U < Ustripe (BWM regime) or when U > Uloc

(LWM regime). The perturbation theories describing these
three lattice regimes are given, and their range of validity
are estimated. In Section 7, figures where one can see how

I depends on U , W and t are shown, exhibiting the decay
of I predicted by the three lattice perturbation theories,
and the continuum regimes where I is invariant when K
is invariant. In Section 8, the effect of the disorder upon
the continuum-lattice crossover is studied. We also show
how an avoided level crossing induces a jump of I and a
change of its sign when N = 3, in a continuum regime
where I is otherwise invariant. The phase diagram of the
different lattice regimes obtained using N = 3 spinless
fermions is sketched in the plane (U/t, W/t) (Fig. 18).
In Section 9, we study the effect of random potentials in
continuum regimes where I remains invariant. We give a
detailed study of the case W = t = 1, where the motion
is diffusive without interaction for the considered values
of L. The study of the map of local currents shows that the
stripe of current observed in the lattice CGSC-regime per-
sists in the continuum limit. The persistence of 1d motions
yielded by the Coulomb repulsion in a 2d disordered lattice
allows us to obtain the parity of the number of particles
contributing to I from the sign of I. This leads us to sug-
gest that a N = 3 diamagnetic Wigner molecule melts in
a disordered lattice through an intermediate “supersolid”
regime where a N = 2 paramagnetic Wigner molecule
co-exists with a third nearly localized particle, before be-
coming a Fermi glass. In Section 9, the three first har-
monics of the function I(Φ) are given as a function of rs,
showing in greater details how a 2d current I of random
sign becomes a 1d current of given sign when the elec-
tronic correlations increase. In Section 10, we underline
the main results obtained in studying three particles: the
existence of a regime of stripe and of a supersolid regime
where the zero point motion of the electron solid becomes
of the order of the system size without disorder, or where
a delocalized pair co-exists with a localized particle with
disorder. We conclude by discussing the possible relevance
of our results when N becomes larger.

2 Lattice Hamiltonian with disorder

The lattice Hamiltonian Hl describing N polarized elec-
trons free to move on a L × L disordered square lattice
with periodic boundary conditions (BCs) reads:

Hl = Hkin + Hint + Hdis. (3)

We write these three terms using the creation (annihila-
tion) operators in real space and in momentum space.

2.1 Site basis

Using the operators c†j (cj) which create (annihilate) a
polarized electron (spinless fermion) at the lattice site j,
the kinetic term reads:

Hkin = t



4N −
∑

〈j,j′〉
c†j cj′



 , (4)
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the Coulomb term reads:

Hint =
U

2

∑

j�=j′

njnj′

|djj′ | . (5)

The third term describes a random substrate:

Hdis = W
∑

j

εjnj. (6)

W gives the strength of the disorder and the variables
εj are taken at random between [−1/2, 1/2]. 〈j, j′〉 means
that the sum is restricted to nearest neighbors. nj = c†j cj.
For a square of area D2, the lattice size is given by
L = D/s, where s is the lattice spacing. Assuming pe-
riodic BCs, we define the distance djj′ between the sites j
and j′ in unit of s, as

djj′ =
L

π

√
sin2 |dx|π

L
+ sin2 |dy|π

L
. (7)

This metric coincides at short distance with the natural
2d metric and avoids [19] to have singular repulsions with
cusps when djj′ ≈ L/2 and s → 0. The corresponding
Coulomb repulsion is essentially equivalent to the one ob-
tained from Ewald’s summation, where one assumes the
infinite periodic repetition of the same L × L square in-
stead of a 2d torus.

2.2 Plane wave basis

The Hamiltonian (3) can also be written using the oper-
ators d†k (dk) creating (annihilating) a polarized electron
in a plane wave state of momentum k:

dk =
1
L

∑

j

e−ikjcj. (8)

Hkin = 4Nt− 2t
∑

k

(cos kx + cos ky) d†kdk (9)

Hint = U
∑

k,k′,q

V (q)d†k+qd†k′−qdk′dk (10)

Hdis = W
∑

k,q

ε(q)d†k+qdk (11)

where
V (q) =

1
2L2

∑

j

cosq · j
dj0

. (12)

and
ε(q) =

1
L2

∑

j

εj exp(−iq · j). (13)

In Figure 1, the structure of the Hamiltonian matrix
for N spinless fermions is sketched in the basis of the Plane
Wave Slater Determinants (PWSDs) d†k1

. . . d†kN
|0〉. The

matrix corresponding to Hkin is diagonal. If we order the
PWSDs by series of same total momentum K =

∑N
i=1 ki,

K

K

K

dis

K

2

3

4

H Hint

1

Fig. 1. Structures of the interaction and disorder Hamiltonian
matrices written in the basis of the PWSDs. The kinetic en-
ergy gives a diagonal matrix. We have sketched the structures
for 4 subspaces of total momenta K1, . . . ,K4. The matrix ele-
ments are zero in the white parts. For Hint, the darker regions
corresponds to hopping terms between PWSDs built out from
one body states of small momenta k only. In the shaded parts
of Hint and HW , the matrices are sparse.

the matrix corresponding to Hint is block-diagonal, each
block being characterized by the same momentum K. In-
side each block, we order the PWSDs by increasing kinetic
energy. The matrix elements between PWSDs for which all
the components of k are small such that sin kx ≈ kx and
sinky ≈ ky, are indicated by a darker grey. Moreover, only
PWSDs of same K having N − 2 momenta k in common
out of N can be directly coupled by the two-body inter-
action. When N ≥ 3, this means that each block of given
K is sparse. In contrast, the random matrix due to HW

has zero matrix elements inside the diagonal blocks of mo-
menta K, but gives non zero off-diagonal terms coupling
those diagonal blocks. These coupling off-diagonal blocks
are even sparser, having non zero terms between PWSDs
differing by a single k only, out of N .

2.3 Lattice factor rs

The continuum thermodynamic limit is obtained when the
finite size effects due to the finite value of N and the lattice
effects due to the finite value of L are negligible. This is
clearly out of reach of the Lanczos algorithm. However, for
a finite value of N , rs remains a scaling parameter when
the lattice effects are negligible. In a medium of dielectric
constant ε, the strength U of the Coulomb repulsion reads:

U =
e2

εs
(14)

while

t =
�

2

2m∗s2
(15)

is the hopping element between nearest neighbor sites and
sets the bandwidth of carriers of effective mass m∗. Taking
m = m∗ and ε = 1, one has in lattice units 1Ry = U2/4t,
aB = 2st/U and

rs =
a

aB
=

UL

2t
√

πN
(16)
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for the rydberg, the Bohr radius and the factor rs

respectively.
Instead of changing the number N of particles, one can

vary rs keeping N fixed and varying U , t and L, and hence
the parameter

rl =
UL

t
= rs

√
4πN. (17)

This amounts to change rs by changing aB instead of a.
The lattice effects are important [19] either at large values
of U (hence large rl) for a given N , or at large values of N
(hence small rs) for a given U . Hereafter, we use rl or U
instead of rs in order to avoid confusion.

3 Persistent current I

An Ahronov Bohm flux Φ is enclosed around the longitu-
dinal x-direction as sketched in Figure 2.

By a gauge transformation, Φ can be included in the
longitudinal BC (antiperiodic BC corresponding to Φ =
Φ0/2 in our convention), while the BC remains always
periodic in the transverse y-direction. This flux creates
persistent currents for a GS of wave-function |Ψ0〉 and of
energy E0(Φ):

– At a site j = (jx, jy), the local longitudinal cur-
rent jl

j(Φ) and the local transverse current jt
j (Φ) read

jl
j(Φ) = 2	

〈
Ψ0

∣∣∣c†j c(jx+1,jy)e
2πi Φ

LΦ0

∣∣∣Ψ0

〉
, (18)

jt
j (Φ) = 2	

〈
Ψ0

∣∣∣c†j c(jx,jy+1)

∣∣∣Ψ0

〉
(19)

in units of
√

t/2m/s.
– The total longitudinal current Il(Φ) enclosing the flux

is obtained by summing the local longitudinal currents:

Il(Φ) = −∂E0(Φ)
∂Φ

=
L∑

jy=1

jl
j =

1
L

∑

j

jl
j . (20)

The latter equation comes from the conservation of the
current. The total transverse current It(Φ) is given by
a similar formula using the jt

j (Φ).
– The change ∆E0(Φ) of the GS energy E0 induced by Φ:

∆E0(Φ) = E0(0) − E0(Φ) (21)

is a quantity related to I which is simpler to study.

The GS total longitudinal current

Il(Φ) =
2
L
	
∑

j

〈
Ψ0

∣∣∣c†j c(jx+1,jy)e
2πi Φ

LΦ0

∣∣∣Ψ0

〉
(22)

can be expressed in terms of the operators d†k (dk). Here-
after, the kx and ky components are quantized in multiples
of 2π/L, and an explicit phase factor exp(2πΦ/(Φ0L)) is
added to the kx-components. This gives

Il(Φ) =
2
L
	
∑

k

e
i
(

kx+2π Φ
LΦ0

) 〈
Ψ0

∣∣∣d†kdk

∣∣∣Ψ0

〉
(23)

x
y

B

I

It

l

Fig. 2. 2d Torus with N electrons enclosing an Aharonov-
Bohm flux Φ ∝ B.

for the total longitudinal current and

It(Φ) =
2
L
	
∑

k

eiky

〈
Ψ0

∣∣∣d†kdk

∣∣∣Ψ0

〉
(24)

for the total transverse current.
Expressed in terms of its projections Ψk1,...,kN onto the

PWSDs
∏N

n=1 d†kn
|0〉, the GS reads:

|Ψ0〉 =
∑

k1,...,kN

Ψk1,...,kN

N∏

n=1

d†kn
|0〉 (25)

which gives

Il(Φ) =
2
L

∑

k1,...,kN

|Ψk1...kN |2
N∑

i=1

sin
(

kix + 2π
Φ

LΦ0

)

It(Φ) =
2
L

∑

k1,...,kN

|Ψk1...kN |2
N∑

i=1

sin kiy. (26)

4 Relation between I and K in the continuum
limit and lattice threshold U∗

As far as the lattice GS occupies small momenta k, one can
approximate the dispersion relation of the lattice model by
the parabolic dispersion relation of the continuum limit:

2 − 2 coski ≈ k2
i and sin ki ≈ ki. (27)

In this approximation, the expressions (26) become

Il(Φ) ≈ 2
L

∑

k1,...,kN

|Ψk1,...,kN |2
N∑

i=1

(
kix +

2πΦ

LΦ0

)
(28)

It(Φ) ≈ 2
L

∑

k1,...,kN

|Ψk1,...,kN |2
N∑

i=1

kiy (29)
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which give

Il =
2
L

(
〈Kx〉 +

2πN

L

Φ

Φ0

)
(30)

It =
2
L
〈Ky〉 , (31)

where 〈Kx,y〉 =
∑

k1,...,kN

(∑N
i=1 ki,x,y

)
|Ψk1,...,kN |2.

This proves an important theorem which was known in
one dimension and numerically checked [20–22] in two di-
mensions: the GS persistent current I is independent of
the interaction strength U in the continuum limit of a non-
disordered lattice model of arbitrary dimensions. More-
over, this provides one criterion (criterion 2 of Ref. [19]) for
obtaining the lattice threshold U∗. We have shown that I
is proportional to K when the momenta k occupied by the
GS are small, allowing to use the approximation (27). The
invariance of I is a direct consequence of the invariance
of K. When U = W = 0, the approximations (27) require
small filling factors N/L2. If one turns on U for W = 0
and a small filling factor, I ∝ K remains independent of U
when U is smaller than the threshold U∗. When U > U∗,
the GS of a non-disordered lattice begins to occupy, in-
side the same subspace of total momentum K, large one
particle momenta k, and the relation between I and K
ceases to be valid. Without disorder, K is always con-
served, and I remains independent of U as far as I ∝ K.
The breakdown of the invariance of I is a consequence
of a localization-delocalization crossover induced by U in
momentum space. For a fixed value of t, this crossover
can be induced by U inside a subspace of given total mo-
mentum K, by W among subspaces of different K, or by
the combined role of U and W . The regime where K is
conserved defines the ballistic many body regime.

5 Overview of the non disordered case
for N = 3

Before considering the case where random potentials
are included, it is useful to summarize what we know
when there is no disorder. Let us review a few pub-
lished [9,19] and unpublished results based on a study
of the case N = 3.

5.1 Continuum Wigner molecule above UW

(rs > rWs ≈ 50)

On a continuum D × D square with periodic BCs, the
Coulomb repulsion with the taken 2d metric reads

V (r) =
e2π

D
√

sin2 rxπ
D + sin2 ryπ

D

. (32)

The GS center of mass is delocalized. When the den-
sity N/D2 is small enough, the spacings d between the
particles are large and one obtains a Wigner molecule,

which is in the continuum limit if the fluctuations of d
are also larger than s. For a given center of mass, to put
the particle on the sites r1 = (0, 0), r2 = (D/3, D/3) and
r3 = (−D/3,−D/3) yields for the Coulomb energy a min-
imum value:

ECoul =
√

6e2π

D
. (33)

For a large D, one can expand the pair-potential around
the equilibrium inter-particle spacing r0 = (D/3, D/3) up
to the second order to get harmonic oscillations around
the equilibrium positions. The Hamiltonian Hc ≈ ECoul +
Hharm, where the harmonic part reads:

Hharm =
1

2m

3∑

i=1

p2
i + XM̂X. (34)

The vector X = (x1, y1, x2, y2, x3, y3) describes the mo-
tions of the molecule around equilibrium. The 6 × 6 ma-
trix M̂ is given by:

M̂ =





2A 2B −A −B −A −B
2B 2A −B −A −B −A
−A −B 2A 2B −A −B
−B −A 2B 2A −B −A
−A −B −A −B 2A 2B
−B −A −B −A 2B 2A




. (35)

where

A =
7
√

6
72

e2π

D3
(36)

and B = 3A/7. Diagonalizing M̂ , one obtains the normal
modes, while the eigenvalues of M̂ give their frequencies.

One obtains two eigenvectors χ1 and χ2 of eigen-
value 0, which corresponds to the translation of the center
of mass of the molecule, two other eigenvectors χ3 and χ4

of eigenvalue 10B, which corresponds to the longitudinal
mode, while the two last eigenvectors χ5 and χ6 of eigen-
value 4B correspond to the transverse mode. The expres-
sions of eigenvectors χi are given in reference [19].

Using these normal coordinates, the Hamiltonian (34)
becomes a decoupled sum of four harmonic oscillators:

Hharm − �
2

2m

6∑

α=1

∂2

∂χ2
α

= 10B
(
χ2

3 + χ2
4

)
+ 4B

(
χ2

5 + χ2
6

)
,

(37)
Without disorder, the interaction can only couple

states of same total momentum K. Inside a subspace of
a total momentum K, the wave functions can be factor-
ized as

Ψ(χ1, . . . , χ6) = ΨK
cm(χ1, χ2)Ψ

n3,...,n6
rel (χ3, . . . , χ6). (38)

The kinetic energy associated to the motion of the center
mass reads:

Ecm(K) = − �
2

2Nm
K2. (39)

The wave-function Ψn3=0,...,n6=0(χ3, . . . , χ6) correspond-
ing to the relative motions can be factorized as:

Ψn3=0,...,n6=0
rel = ϕ0L(χ3)ϕ0L(χ4)ϕ0T (χ5)ϕ0T (χ6) (40)
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for the ground state (n3 = 0, . . . , n6 = 0) of momentum K.
L, T refer to the transverse and longitudinal modes and ϕ0

is the GS of an harmonic oscillator:

ϕ0(x) =
1

l
1/2
ω π1/4

exp− x2

2l2ω
, (41)

of characteristic length:

lω =
(

�
2

m2ω2

)1/4

. (42)

For the expanded pair potentials, the GS energy E0(K)
inside a subspace of momentum K becomes

E0(K) = ECoul + Ecm(K) + �(ωT + ωL); (43)

where

ωL =

√
20B

m
, ωT =

√
8B

m
. (44)

In lattice units, one gets:

E0(K) = ECoul + Ecm(K) + Erel,0, (45)

where Erel(n3 = 0, . . . , n6 = 0) = Erel,0.

Ecm(K) =
t

N
K2 (46)

Erel,0 =
√

6πU

L
+ (

√
5 +

√
2)

√√
6π3

3

√
Ut

L3
. (47)

E0(K) depends on K only through Ecm(K),
while ECoul and the transverse and longitudinal modes
remain independent of K. This is still the case if one
goes beyond the harmonic approximation for the pair
potentials, including anharmonic corrections. The only
approximation which we have done is to assume that
the relative motions are small compared to D. Thus the
GS relative wave functions Ψn3=0,...,n6=0

rel (χ3, . . . , χ6) and
Erel(n3 = 0, . . . , n6 = 0) are approximated by the solu-
tions of an unbounded 2d system, while the wave functions
of the center of mass ΨK

cm(χ1, χ2) and Ecm(K) correspond
to a bounded 2d system. The assumed 2d harmonic os-
cillations make sense only if the Wigner molecule is rigid
enough for making negligible the boundary effects upon
the relative motions.

5.2 Supersolid molecule below UW

(rFs < rs < rWs )

To determine the values of rs where the GS energy is de-
scribed by equation (45), we plot in Figure 3 the GS en-
ergies E0(K) − Ecm(K) − ECoul as a function of rs, for
a size L = 18 and different subspaces of momentum K.
ECoul =

√
6πU/L when L/3 is integer.

The solid line (0.139
√

rs) gives the behavior implied
by the continuum harmonic expansion (Eq. (45)) with un-
bounded relative motions. One can see that this theory is
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Fig. 3. W = 0, L = 18 and N = 3: The GS-energies E0(K) −
Ecm(K) − ECoul for different total momenta K as a function
of rs. The arrow shows rW

s ≈ 50 above which the behavior
is given by equation 45 (solid line 0.139

√
rs) up to the lattice

threshold r∗s .

accurate for rW
s < rs < r∗s . Above rW

s ≈ 50, the relative
motions become localized and coincide to unbounded har-
monic vibrations. Below rW

s , the behavior is more compli-
cated. On one side, the E0(K) are roughly described above
rF
s ≈ 10 by the expansion (45) valid for a continuum solid

molecule. On the other side, the relative motions depend
on K, a dependence which cannot exist unless the relative
motions are extended over a scale of the order of the sys-
tem size D = Ls. Large zero-point motions are expected
in a supersolid. For N = 3, we have shown that there is
regime where there is a floppy Wigner molecule, though
the relative motions depends on the quantization of K
and hence on the BCs. This intermediate “supersolid”
regime was noted in reference [9] using another 2d metric
for L = 6, a limit where the lattice effects play a role. Our
results for a Wigner molecule describable by a continuum
theory when L = 18 gives further support to the existence
of an intermediate regime for rF

s < rs < rW
s which is not

a lattice effect. Hereafter, we use the word “supersolid” to
refer to this regime.

5.3 Lattice regime above U∗(L)
(rl > r∗

l (L))

The GS energy of the lattice model (Hamiltonian 3) is also
not described by the continuum expansion (45) above the
lattice threshold r∗l (L). Three equivalent criteria were in-
troduced in reference [19] for giving r∗l (L). One was based
on the breakdown of the invariance of I discussed in Sec-
tion 4. Let us introduce a fourth criterion which gives
a similar answer: the lattice spacing s becomes relevant
when the size lω of the harmonic oscillations becomes of
the order of the lattice spacing s. The longitudinal modes
giving the smallest scale, the criterion reads

lωL =
(

�
2

m2ω2
L

)1/4

≈ s, (48)
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Fig. 4. W = 0, N = 3: The dimensionless GS-energies F0 for
different total momenta K as a function of rl = UL/t for L = 9
and L = 18. The solid line 0.2326

√
rl comes from equation (51).

giving r∗l (L) ≈ (2
√

6)/(5π)L4 or

U∗(L)
t

≈ 2
√

6
5π

L3. (49)

When U > U∗(L) (rl > r∗l (L)), the lattice model ex-
hibits a different behavior than its continuum limit and rs

ceases to be a scaling parameter. This difference is shown
in Figure 4, where one can see the universal scaling
regime below r∗l (L) and the non universal lattice behaviors
above r∗l (L).

To show scaling when the GSs of different to-
tal momenta K correspond to a rigid molecule with
K-independent harmonic oscillations and a K-dependent
translation of the center of mass, we use the dimensionless
quantum correction F0(K, rl) to the classical electrostatic
energy:

F0(K, rl) =
E0(K, rl) − Ecm(K) − ECoul

E0(K = 0, U = 0)
. (50)

F0(K, rl) is shown in Figure 4 as a function of rl = UL/t
for different momenta K and N = 3. One can see that
the data obtained for L = 9 and 18 are on the same
universal curve below r∗l (L), the curve depending on K
below a value rW

l corresponding to rW
s ≈ 50. The uni-

versal K-independent scaling curve 0.2326
√

rl is obtained
assuming that E0(K = 0, U = 0) ≈ 8π2t/L2 as in the
continuum limit:

F0 =
√

5 +
√

2
8π2

√√
6π3

3

√
UL

t

=
√

5 +
√

2√
96

(
18
π

)1/4 √
rs

= 0.5764
√

rs = 0.2326
√

rl. (51)

F0 saturates above r∗l (L) to a value 4Nt/(8π2t/L2) which
is independent of U .

6 Effects of a weak disorder in the lattice
regime of an electron solid

Without interaction (U = 0) one has three regimes (bal-
listic, diffusive and localized) as W increases. Assuming
Drude formula and Born approximation, the dimension-
less conductance g reads [23]:

g ≈ kF l

2
≈ 96π

N

L2

(
t

W

)2

. (52)

For a Fermi momentum kF ≈ √
4πN/(Ls)2, the elastic

mean free path l becomes

l ≈ 96
√

πN

L

(
t

W

)2

s. (53)

If U = 0, N = 3, L ≈ 6−9, this gives a ballistic motion
when W/t ≈ 0.01−0.1, a diffusive motion when W/t ≈ 1,
and strong Anderson localization for W/t ≈ 10−20.

Let us first study the effect of a weak disorder in the
simple lattice regime where the three particles form an
electron solid (Wigner molecule). Since rl becomes an ir-
relevant parameter above r∗l , we simply use the param-
eter U , U∗ being the interaction strength corresponding
to r∗l (L) for the used values of L and t. For U > U∗,
the low energy physics of the N -body problem can be de-
scribed by an effective one particle problem. For N = 3
and L/3 integer, the Wigner molecule is oriented along
one of the two diagonals of the square lattice. The average
interparticle spacing 〈d〉 = (±L/3,±L/3) and the fluctu-
ations of d are smaller than s above U∗. Taking t = 1, a
fixed value of L and a weak value of W , one gets three lat-
tice regimes when one increases U above U∗, characterized
by three different lattice perturbation expansions. First,
there is a Ballistic Wigner Molecule (BWM) on a scale L
smaller than the elastic mean free path lcm characterizing
the motion of the center of mass. On this small scale,
the disorder can be neglected, the motion of the cen-
ter of mass remains ballistic and can be described by a
non-random single particle lattice model with an effective
nearest neighbor hopping term teff ∝ tN/UN−1. Above
an interaction Ustripe > U∗, the effects of disorder be-
come relevant and must be included in the effective single
particle model. This gives a new regime where the inter-
play between disorder and electronic correlations leads to
a Coulomb Guided Stripe of Current (CGSC), since the
current I flows along the axis of the Wigner molecule.
Eventually, the effective model breaks down when U ex-
ceeds a large threshold Uloc > Ustripe > U∗, and we have
the perturbative regime analyzed in references [24,25] for
a localized Wigner molecule (LWM). While the motion
induced by Φ is along the shortest paths enclosing Φ in
the BWM and in the LWM regimes, the motion in the
intermediate CGSC regime uses a longer path of smaller
electrostatic cost.

In Figure 5, we have sketched the different hopping
processes characterizing these three regimes when L = 6.
The left figure corresponds to a Ballistic Wigner molecule
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Fig. 5. Sketches of the hopping processes characterizing the
three lattice regimes of a very weakly disordered lattice when
U > U∗ for L = 6 and N = 3. From left to right: Ballistic
Wigner molecule (BWM) when U∗ < U < Ustripe; Coulomb
Guided Stripe of Current (CGSC) when Ustripe < U < Uloc

and one particle motion out of a Localized Wigner Molecule
(LWM) above Uloc.

(BWM). The middle figure describes the Coulomb Guided
Stripe of Current (CGSC) induced by the interplay be-
tween disorder and electronic correlations. The right fig-
ure shows a Localized Wigner Molecule (LWM) carrying
exponentially small one particle currents.

6.1 Lattice regime for a ballistic Wigner molecule

When L is smaller than the elastic mean path lcm of the
center of mass of the Wigner molecule, K does not vary
and one can consider a subspace of total momentum K.
Assuming L/3 integer and t/U → 0, the GS reads

|Ψ0(K)〉 = A
∑

j

eiK·jC†
j |0〉 , (54)

where
C†

j = c†j c
†
j+(L/3,L/3)c

†
j+(2L/3,2L/3) (55)

and A is a normalization constant. When t = 0, we
have 2L2/3 configurations C†

j |0〉 of identical Coulomb en-
ergy ECoul. Without disorder, this large degeneracy is re-
moved by a hopping term teff ∝ t3/U2 coupling two near-
est neighbor configurations C†

j |0〉 and C†
j′ |0〉, as indicated

in Figure 5 left. At this order, one gets an effective one par-
ticle L/3 × L lattice model described by

Heff (W = 0) = 4Nt + ECoul − teff
∑

〈j,j′〉
C†

j Cj′ . (56)

where the effective hopping term reads

teff =
∑

{P}

tN∏
γ

(
ECoul − EPγ

) , (57)

P labeling a series of intermediate configurations coupling
j and j′ of Coulomb energy EPγ . This gives

teff ∼ tN

UN−1
L3N−3, (58)

and for N = 3

teff = 6
t3

(
7
√

6
36

Uπ
L3

)2 . (59)

Fig. 6. Ballistic translation of a Wigner Molecule in the lattice
regime (BWM regime), obtained in a disordered sample with
N = 3, L = 9, W = 0.01, t = 1 and U = 300. Left figure:
map of currents for Φ = 0.05Φ0. Right figure: corresponding
site occupation numbers n0

j .

Including the flux in the longitudinal hopping
terms teff exp (i2πNΦ/Φ0L), one gets for the change of
the GS energy

∆E0 (Φ,K) =

2teff

(
cos(Kx +

2πNΦ

Φ0L
) − cosKx

)
. (60)

In Figure 6 as in the following ones, the maps of lo-
cal currents characterizing a disordered sample and the
corresponding site occupation numbers n0

j given by

n0
j =

〈
Ψ0(U)

∣∣∣c†j cj
∣∣∣Ψ0(U)

〉
(61)

are shown using the same convention: the arrows between
neighboring sites give the local currents, the largest lo-
cal current found in the sample is shown by an arrow of
length s, while n0

j = 1 is shown by a disk of diameter s.
A small value Φ = 0.05Φ0 is used for driving the persistent
currents.

In Figure 6, the map of local currents are given for
a weakly disordered sample (W = 0.01 and t = 1) with
an interaction strength U = 300 above U∗ and the corre-
sponding site occupation numbers n0

j . The map of currents
and the density exhibit an almost perfect translational in-
variance in this ballistic regime and gives an illustration
of the BWM motion characterized by teff .

6.2 Lattice regime for a Coulomb guided stripe
of current

As one continues to increase U , the effect of disorder
cannot be ignored and the Wigner molecule finishes to
be pinned in the GS configuration C†

j |0〉 of minimum
Coulomb energy for which

∑
j εj is also minimum. As one

can see in Figure 7 (right), a complete localization of the
center of mass of the rigid molecule is achieved for a dis-
ordered sample with W = t = 1 and U = 1000. The
GS probability to occupy a site is almost zero outside three
sites where C†

j |0〉 has a minimum energy. It is likely that
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Fig. 7. Coulomb Guided Stripe of Current (CGSC) in the
lattice regime, obtained in a disordered sample with N = 3,
L = 9, W = t = 1 and U = 1000. Left figure: map of currents
for Φ = 0.05Φ0 . Right figure: corresponding site occupation
numbers n0

j .

this complete localization is obtained after a small diffu-
sive regime. In this pinned regime, two competing motions
are now relevant for enclosing the flux, which are sketched
in Figure 5 (middle and right). The CGSC motion (Fig. 5
middle) is larger when Ustripe < U < Uloc while the
LWM motion (Fig. 5 right) dominates the longitudinal
motion when Uloc < U . Let us first study the CGSC mo-
tion. The effect of disorder can be included by adding
random site potentials Wωj to the effective one particle
model (56):

Heff (W ) = Heff (W = 0) + W
∑

j

ωjC
†
j Cj, (62)

where ωj = εj + εj+(L/3,L/3) + εj−(L/3,L/3).
Assuming the Hamiltonian (62), the GS flux depen-

dence is obtained at the order 2L/3 of an expansion
in powers of teff /W , corresponding to the (L/3, L/3)-
translation shown in Figure 5 middle. One gets for the
GS energy change

∆E0 (Φ) ∝ t
2L/3
eff cos (2πΦ/Φ0)
√

NW
2L/3−1

(63)

∝ t2LL4L cos (2πΦ/Φ0)
W 2L/3−1U4L/3

, (64)

which gives for the two sizes L which we have studied

∆E0 (L = 6, Φ) ∝ t12

W 3U8
cos (2πΦ/Φ0) (65)

∆E0 (L = 9, Φ) ∝ t18

W 5U12
cos (2πΦ/Φ0) (66)

respectively.
The current I forms a stripe which follows the axis of

the pinned Wigner molecule for enclosing the flux. The
path is longer than the shortest path, but it uses inter-
mediate configurations of minimum Coulomb energy. An
illustration of such a stripe is given in Figure 7 (left),
obtained using a disordered sample where W = t = 1
and U = 1000: the pinned Wigner molecule carries in the
CGSC regime a current of components Il = It, in contrast
to the BWM and LWM regimes where It is negligible com-
pared to Il.

Fig. 8. One particle motions out of a Localized Wigner
Molecule (LWM) in the lattice regime: Disordered sample with
N = 3, L = 9, t = 1, W = 20 and U = 1000. Left figure: map
of currents for Φ = 0.05Φ0. Right figure: corresponding site
occupation numbers n0

j .

6.3 Lattice regime for a localized Wigner molecule

When U becomes very large, the previous CGSC re-
mains and gives the transverse current It, but the main
contribution to Il is no longer given by the effective
Hamiltonian (62). This is because one particle hops, us-
ing L − 1 intermediate states of high Coulomb energy
become more advantageous than the correlated effective
hopping using 2L − 1 states of smaller Coulomb energy.
For N = 3, this corresponds to one particle hops along
the shortest path inclosing the flux (see Fig. 5 right). To
numerically get this regime for a very weak disorder and
L = 9 requires a very large value of U/t, where the nu-
merical results become inaccurate. Nevertheless, an illus-
tration of this regime using a sample with a large disorder
(W/t = 20) is given for U/t = 1000 in Figure 8, with the
corresponding GS occupation numbers.

The GS energy change ∆E0 (Φ) reads:

∆E0 (Φ) ∝ tLL3L−3

UL−1
cos (2πΦ/Φ0) (67)

which gives for the two sizes L which we have studied

∆E0 (L = 6, Φ) ∝ t6

U5
cos (2πΦ/Φ0) (68)

∆E0 (L = 9, Φ) ∝ t9

U8
cos (2πΦ/Φ0) (69)

respectively.

6.4 Crossovers between the different lattice regimes

To obtain the threshold values where a crossover between
different lattice regimes occurs, we compare the GS energy
changes ∆E0 (Φ) of the different lattice regimes (Eqs. (60,
64) and (67)).

Increasing W/t for a ratio U/t > U∗/t, the BWM-
CGSC crossover takes place when W reaches a threshold
value Wstripe ≈ teff . This gives:

Wstripe

t
∝
(

t

U

)2

L6. (70)
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The CGSC-LWM crossover takes place when W/t reaches
a second threshold

Wloc

t
∝
(

t

U

) L+3
2L−3

L
3L+9
2L−3 . (71)

If one increases U/t above U∗/t for a given ratio W/t,
the BWM-CGSC crossover occurs when U/t becomes of
the order of

Ustripe

t
∝
(

t

W

)1/2

L3, (72)

followed by the CGSC-LWM crossover when U/t reaches

Uloc

t
∝
(

t

W

) 2L−3
L+3

L
3L+9
L+3 . (73)

7 Numerical results for N = 3 particles

The study of different samples confirms the dependences
of the effective hopping terms predicted for the three lat-
tice regimes as a function of the lattice parameters U , W
and t in the expected ranges of parameters. We show nu-
merical results for the total currents Il and It, and their ra-
tios It/Il obtained using disordered samples, fixing two pa-
rameters (U , W or t) and varying the third, when a small
flux Φ = 0.05Φ0 is enclosed. We give the typical behavior
obtained using a single sample, without ensemble average.
The sample to sample fluctuations are negligible for weak
disorders, and can be more important when W becomes
large.

7.1 Persistent currents as a function of U

In Figures 9 and 10, the amplitude of the total longitudinal
current |Il| is shown as a function of U for t = 1 and
various values of W , for L = 6 and 9 respectively. The
power laws with the predicted exponents characterize the
decay of the currents (U−2, U−4L/3 and U1−L) in the three
expected lattice regimes.

In Figures 11 and 12, the ratio |It/Il| is given as a
function of U . Since the stripe of current characterizing
the CGSC-regime yields a ratio |It/Il| = 1, one can see
on those figures the values of U where the CGSC-regime
takes place. For small values of U which are below the lat-
tice threshold U∗, one can see in Figures 9 and 10 that |Il|
and |It| are essentially independent of U , excepted around
a value Ulc where an avoided level crossing occurs. The
value of Ulc depends on W and t and exhibits small sam-
ple to sample fluctuations. This avoided crossing yields a
change of the sign of Il, a sharp drop of |Il| and a singular-
ity in |It/Il| which can be seen in Figures 11 and 12. The
continuum behaviors taking place when U < U∗, where Il

and It are essentially independent of U instead of exhibit-
ing the lattice decays while |It/Il| ≈ 1, are studied in
Section 9.
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Fig. 9. L = 6 and t = 1: Amplitude |Il(Φ = 0.05Φ0)| of the
total longitudinal current as a function of U for a disordered
sample with increasing values of W . The thick solid lines give
the expected lattice decays.
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Fig. 10. L = 9 and t = 1: Amplitude |Il(Φ = 0.05Φ0)| of the
total longitudinal current as a function of U for a disordered
sample with increasing values of W . The thick solid lines give
the expected lattice decays.
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Fig. 11. L = 6 and t = 1: Ratio It/Il for Φ = 0.05Φ0) as a
function of U for increasing values of W .

7.2 Persistent currents as a function of W

Figures 13 and 14 show for L = 6 and 9 respec-
tively how the amplitudes |Il| (indicated by lines with
symbols) and |It| (indicated by the same lines without
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Fig. 12. L = 9 and t = 1: Ratio It/Il for Φ = 0.05Φ0 as a
function of U and increasing values of W .

symbol) vary as a function of W for t = 1 and vari-
ous values of U . When U is large (U = 100−1000), one
can see the expected lattice behaviors: the CGSC-decay
Il ∝ W−(2L/3−1) for Wstripe < W < Wloc followed
above Wloc by the LWM-regime where Il saturates to
a small value independent of W . When U is smaller
(U = 1−10), Il is first almost independent of W , before
decaying as W−1 when 1 < W < 10 for L = 6 and 9.

The transverse current It begins to increase as a func-
tion of W from the zero value characterizing the limit
W = 0. This increase of It takes place for the values of W
where Il is roughly independent of W . This increase goes
as W 2 for large interactions (U = 100−1000) and as W for
small interactions (U = 1−10), as underlined in Figure 13.
These two different powers can be explained by a pertur-
bative expansion in powers of W . When W = 0, GSs of
different total momenta K are degenerate when U is small
and It ∝ W . As U increases, there is a level crossing for
W = 0 above which there is a non-degenerate GS of mo-
mentum K = 0 and It ∝ W 2 when U is large. The increase
of It is followed by a regime where It ≈ Il when L = 6 or
exhibits the same decays (W−1 or W−(2L/3−1)) than Il

when L = 9. For large U and above Wloc, It continues to
decay as in the lattice CGSC-regime (It ∝ W−(2L/3−1))
while Il saturates to a W -independent value.

7.3 Persistent currents as a function of t

In Figures 15 and 16, the amplitudes |Il| and |It| are shown
as a function of t for W = 1 and various values of U , using
disordered samples of size L = 6 and 9 respectively. The
power laws shown by thick lines give the decay of the cur-
rents tL, t2L for L = 6 and 9 respectively, as expected for
lattice regimes (t < t∗) with W = 1. The t3-behavior ex-
pected in the BWM-regime requires a smaller disorder to
be observed. For t > t∗, the behaviors are similar to those
observed for t = 1 and U < U∗. In the lattice LWM regime
(t → 0), one can see that |It| continues to exhibit the lat-
tice CGSC-behavior ∝t2L while |Il| ∝ tL becomes much
larger.
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Fig. 13. L = 6 and t = 1: Amplitudes |Il| (indicated by a line
with a symbol) and |It| (indicated by a line without symbol)
of the total longitudinal and transverse currents as a function
of W . The data are obtained using a disordered sample with
Φ = 0.05Φ0. The symbols and lines corresponding to different
values of U are defined in the figure. The thick solid lines give
the W−3, W−1, W 1 and W 2 decays respectively.
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Fig. 14. L = 9 and t = 1: Amplitudes Il (indicated by a line
with a symbol) and It (indicated by a line without symbol) as
a function of W . The studied values of U are represented as
in Figure 13. The thick solid lines give the W−5, W−1 and W 2

decays respectively.

8 Continuum-lattice crossovers with disorder

We have shown in Section 4 that I ∝ 〈K〉 unless the
GS begins to occupy states of high momenta k. There-
fore, the breakdown of the interaction-invariance of I is a
consequence of a localization-delocalization transition in-
duced by U or W in momentum space, unless one has a
level crossing. Without disorder, a jump in the GS total
momentum K can be induced by level crossings between
GSs of different K. In the presence of disorder, these level
crossings become avoided level crossings. We discuss in
the following sub-section how avoided level crossings limit
the interaction-invariance of I, outside the lattice regimes
where the relation I ∝ 〈K〉 is broken.
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Fig. 15. L = 6 and W = 1: Amplitudes |Il| (lines with sym-
bols) and |It| (lines without symbol) as a function of t, ob-
tained using a disordered sample with increasing values of U
and Φ = 0.05Φ0. The thick solid lines give the expected lattice
behaviors.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

0.1 1 10

I(
Φ

=
0.

05
Φ

0)

t

~t18

U=10
U=30

U=100
U=300

Fig. 16. L = 9 and W = 1: Amplitudes |Il| (line with sym-
bols) and |It| (line without symbol) as a function of t, ob-
tained using a disordered sample with increasing values of U
and Φ = 0.05Φ0. The thick solid lines give the expected lattice
behaviors.

8.1 Level crossings below rWs and momentum
conservation

When W = 0, K is conserved and one can follow the
GS of given K as a function of U . When U = 0, the
GS momentum is K = 0 only if the Fermi shell is full.
For a square lattice, this corresponds to N = 1, 5, 9, . . ..
For UW < U < U∗, the GS is a Wigner molecule with
harmonic oscillations and a delocalized center of mass.
This is what we have shown for N = 3 in Section 5. The
GS energy

E0(K, rs) ≈ Ecm(K) + Erel(rs) + Ecoul (74)

depends on K via the motion of the center of mass
only. In this continuum Wigner regime, the kinetic en-
ergy of the center of mass is minimum for K = 0. So
for N = 1, 5, 9, . . ., the GS remains in the sub-space of
K = 0 when U varies and does not exhibit level crossings
between GSs of different K. For N = 3, this is differ-
ent, because the GS momentum K �= 0 at U = 0 and
must be zero above UW . This yields a GS-level crossing
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Fig. 17. L = 6 and t = 1: Change ∆E0 of the GS energy
induced by Φ = 0.005Φ0 as a function of U for different values
of W .

at an interaction Ulc which is necessary smaller than UW .
In the presence of a weak disorder, this crossing becomes
weakly avoided. Following the true GS as a function of U ,
we expect that its total momentum will be conserved,
outside the avoided crossing where K exhibits a sharp
drop from a value K �= 0 to K = 0. This is illustrated
in Figure 17 where one can see the change ∆E0 of the
GS energy induced by Φ = 0.05Φ0 as a function of U .
∆E0 (K) are given when W = 0 and L = 6 for K = (0, 0)
and 2π/L(1, 1). One can see the interaction independent
behaviors up to a lattice threshold U∗(L = 6) ≈ 100,
followed by the lattice decay ∝U−2. When we include a
very weak disorder (W/t = 0.01), and follow the true GS,
∆E0(W = 0.01) ≈ ∆E0 (W = 0,K = 2π/L(1, 1)) up to
the avoided crossing taking place at an interaction Ulc ≈
10 where ∆E0 jumps towards the GS-behavior character-
izing W = 0 and K = 2π/L(0, 0).

We now study when the relation I ∝ 〈K〉 is broken in a
disordered lattice of elastic mean free path l and localiza-
tion length ξ without interaction. To obtain the threshold
values where the lattice-continuum crossover takes place,
we use the change ∆E0 of the GS energy instead of I,
and look when the ∆E0(U) characterizing the three lat-
tice regimes described in Section 6 become of the order
of ∆E0(U = 0).

8.2 Lattice-Continuum crossover in the ballistic regime
(L < l)

When L < l, ∆E0 ≈ t without interaction and goes as teff
in the BWM-regime. The condition:

t ≈ L6t3

U2
, (75)

gives for the threshold U∗/t the same equation

U∗

t
≈ L3, (76)

than equation (49).
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8.3 Continuum-lattice crossover in the diffusive regime
(l < L < ξ)

When the one particle motion is diffusive without interac-
tion, ∆E0(U = 0) ∝ I(U = 0) ∝ �ekF l/(mLs2) ∝ gt/L2

(see Refs. [26,27]). When ∆E0 becomes smaller than
∆E0(U = 0) for values of U > Ustripe, the exponent of
the decay which can be seen in Figures 9 and 10 (curves
for W = 0.1t and 1t) shows that one enters in the lat-
tice CGSC-regime. Since g ∝ (t/(LW ))2, the crossover
threshold Ustripe is given by the condition ∆E0(U = 0) ≈
gt/L2 ≈ ∆E0,stripe, or

t3

W 2L4
≈ t2LL4L

W 2L/3−1U4L/3
, (77)

which gives a continuum-lattice crossover taking place in
the diffusive regime when:

Ustripe

t
∝
(

t

W

)1/2

L3. (78)

Comparing equation (78) and equation (72), one can see
that one gets the same relation for the continuum-lattice
crossover in a diffusive sample (e.g. W ≈ t for L = 6 − 9)
and for the BWM-CGSC crossover in the lattice regime of
a weakly disordered sample (e.g. W ≈ 0.01t for L = 6−9).

8.4 Continuum-Lattice crossover in the localized
regime (L > ξ)

When all the particles are localized without interaction,
∆E0 ≈ t exp−(L/ξ) where the localization length ξ ≈√

t/W for a large ratio W/t (see Ref. [28]). When ∆E0

decays as a function of U , we can see in Figure 17 that
this decay corresponds to the lattice LWM-regime. The
continuum-lattice crossover in strongly disordered samples
takes place when

t exp

(
−L

√
W

t

)
≈ tLL3L−3

UL−1
(79)

which gives an interaction threshold

Uglass

t
≈ L3 exp

(√
W

t

)
(80)

above which one has the LWM-regime instead of a corre-
lated Anderson insulator (CAI) for a large size L.

Let us mention that a complete discussion of the var-
ious possible lattice regimes requires to consider also the
lattice regimes yielded by large values of W as we have
considered the lattice regimes yielded by large values of U ,
since the GS can occupy large momenta k either when U
or W are large. A complete study will require also to de-
termine if the CAI regime is in a continuum limit or in
a lattice limit, as a function of the disorder strength W
and L. We do not discuss in more details this issue, though
the data which we show for large values of W/t are cer-
tainly not in a continuum regime.

0
U U/t

BWM

W/t
CAI

Wglass

CGSC

LWM

W

Wstripe

loc

U*UWF

loc.

diff.

ball.

Fig. 18. Different lattice regimes for N = 3 spinless fermions
in L×L disordered lattices. The shaded part of the (U/t, W/t)
plane gives the continuum regimes where I does not depend
on U/t. The thick dashed lines give the threshold values Wstripe

and Wloc and Wglass separating different lattice regimes. U∗,
UW and UF are defined in Section 3. The continuum and lattice
CAI regimes occuring at large disorders are not separated.

8.5 Sketch of the phase diagram of the different
lattice regimes obtained for N = 3

We have sketched in Figure 18 the different lattice regimes
characterizing N = 3 spinless fermions in the plane
(U/t, W/t). The shaded part of the (U/t, W/t) plane gives
the continuum regimes which we will study in more details
in Section 9. The non shaded part gives the lattice regimes
which we have studied. Let us summarize the behaviors
obtained by increasing U for small disorder strengths W .

When W = 0, one gets between UF and UW a contin-
uum supersolid molecule between the Fermi system and
the continuum Wigner molecule before having a lattice
Wigner molecule above U∗ (see Sect. 5).

When W/t < 1 and L ≈ 6 − 9, the continuum bal-
listic regimes are followed by three lattice regimes taking
place above U∗/t: a BWM regime for U∗ < U < Ustripe;
a CGSC regime for Ustripe < U < Uloc and eventually
a LWM regime above Uloc. The disorder is irrelevant be-
low Ustripe, unless the system is at the vicinity of an
avoided level crossing.

When W/t is large enough to yield Anderson local-
ization inside a small scale L ≈ 6−9, the Fermi glass
with Anderson localization (CAI regime) becomes a highly
correlated solid as U increases, through an intermediate
regime studied in reference [4]. Three examples are given
in Figure 17 for W/t = 10, 20, 40, showing that when U
exceeds Uglass, a localized regime where I is independent
of U gives rise to another localized regime where I be-
comes independent of W . In those three cases, Il changes
its sign around Uglass. As pointed out in references [4,5],
the sign of Il fluctuates from sample to sample for weak U
while it becomes non-random at large U .

We study in the following section the effect of U upon
the continuum limit of a diffusive sample where W = t = 1
for L = 6 and 9.
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9 Analysis of the continuum regimes
of a diffusive sample

For a ratio W/t ≈ 1, there is a diffusive motion when
U/t = 0 and L ≈ 6 or 9. We study the continuum limit
where I does not exhibit the power law decays charac-
teristic of lattice regimes. For values of U/t smaller than
the lattice threshold U∗/t, one can indeed see in Figures 9
and 10 that |Il| and |It| are almost independent of U , ex-
cepted around the value Ulc where an avoided level cross-
ing occurs. Ulc depends on W and t and exhibits sample to
sample fluctuations. This avoided crossing yields a change
of the sign of Il, a sharp drop of |Il| and singularities
in |It/Il| (see Figs. 11 and 12). Since the total current I is
independent of U/t outside level crossings in the contin-
uum limit, one needs to study the local currents and the
corresponding particle densities for detecting the different
continuum regimes.

9.1 Continuum regime for a Coulomb guided stripe
of current

As one can see in Figures 11 and 12, |It/Il| = 1 be-
low U∗/t, while Il and It are independent of U instead
of exhibiting the lattice decays. This shows us that the
regime of current stripes is robust, and persists outside
the lattice limit, in the continuum diffusive limit. This
continuum CGSC regime is illustrated in Figure 19. The
left figure shows the map of local currents obtained in a
disordered sample with N = 3, L = 9, W = 1, t = 1
and U = 50. The current exhibits the Coulomb guided
flow along the diagonal direction, while one can see in
Figure 10 that I does not vary as a function of U around
U = 50. The corresponding site occupation numbers given
in Figure 19 (right) form an extended diagonal stripe, in-
stead of being localized upon three main sites, as in the
CGSC lattice regime shown in Figure 7 (right).

9.2 Diamagnetic or paramagnetic currents?

Before considering weaker values of U to be closer to
the quantum Fermi limit, it is useful to mention a the-
orem proved by Leggett [29] for one dimensional spinless
fermions with arbitrary interaction and external poten-
tials. This theorem allows to determine the parity of the
number of particles carrying I from the sign of I. Using
a certain variational ansatz for the GS wave-function, one
can show that I is diamagnetic for an odd number N of
particles when Φ ≈ nΦ0 or for an even number N of par-
ticles when Φ ≈ (n + 1/2)Φ0, where n is an integer. This
means that the charge stiffness

D =
(−1)NL

2
(E0(0) − E0(π)) ≥ 0 (81)

in one dimension. To odd numbers N correspond diamag-
netic currents, while they are paramagnetic if N is even.

Fig. 19. Coulomb guided stripe of current in the continuum
limit. Disordered sample with N = 3, L = 9, W = 1, t = 1
and U = 50. Left figure: map of currents for Φ = 0.05Φ0. Right
figure: corresponding site occupation numbers n0

j .

This result has always been verified [30] in numerical stud-
ies of one dimensional systems with arbitrary disorders
and interactions. The argument is based on the study
of the nodes of the wave functions, a simple exercise in
one dimension which becomes highly nontrivial and still
unsolved in higher dimensions. If the transverse dimen-
sions are small, one can argue that nodal surfaces having
a two dimensional topology will cost too much kinetic en-
ergy, and that the sign of I is still given by the one dimen-
sional rule. In the square lattices which we consider, we
do not use Leggett’s rule because the system is a narrow
stripe, but because the Coulomb repulsion gives rise to
a narrow stripe of current in the 2d lattice, reducing the
two dimensional dynamics to a simpler one dimensional
contribution. From the sign of I, one can know the parity
of the effective number of particles which give rise to the
observed one dimensional stripe of current.

9.3 Disordered supersolid regime

When we continue to decrease U , to eventually get a Fermi
glass of three independent particles, we observe for N = 3
a level crossing around Ulc where the sign of I changes.
I is diamagnetic above Ulc and paramagnetic below Ulc.
When U is not too weak, the local currents forms a stripe
of an almost one dimensional topology. This allows us to
use Leggett’s rule to argue that a diamagnetic current
stripe is carried by N = 3 particles, while the paramag-
netic current stripe which persists below Ulc is due to a
single delocalized pair (N = 2 even) in the background of
an almost localized third particle. Below Ulc, the corre-
lated pair gives a dominant paramagnetic current, while
the third localized particle gives rise to a negligible 2d cur-
rent of random sign. This disordered supersolid regime
seems to be associated with the 1/W -behavior of I shown
in Figures 13 and 14.

Using the same sample which displays the continuum
diamagnetic stripe shown in Figure 19 for U = 50, one
shows the map of currents and the occupation numbers n0

i
in Figures 20 and 21 for U ≈ Ulc ≈ 15 and U = 7 respec-
tively. The n0

i are close to those obtained in the same
sample for U = 50 (see Fig. 19). They form approxi-
mately the same stripe, though its width becomes broader.
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Fig. 20. Behavior obtained near the avoided level crossing
(Ulc) for a disordered sample with N = 3, L = 9, W = 1, t = 1
and U = 15. Left figure: map of currents for Φ = 0.05Φ0. Right
figure: corresponding site occupation numbers n0

j . The n0
j are

similar to those obtained in the same sample with U = 50 (see
Fig. 19) while the currents is the superposition of two perpen-
dicular diagonal motions.

Fig. 21. Behavior obtained below the paramagnetic-
diamagnetic crossover for a disordered sample with N = 3,
L = 9, W = 1, t = 1 and U = 7 (rs ≈ rF

s ). Left figure: map
of currents for Φ = 0.05Φ0. Right figure: corresponding site
occupation numbers n0

j . The left and right figures are now dis-
connected, I flowing mainly perpendicularly to the axis where
the n0

j are maxima.

However, the map of currents are very different. As one
can see in Figure 21 for U = 7, the current stripe shown
in the left figure is perpendicular to the density stripe vis-
ible in the right figure, while there is a superposition of
two perpendicular diagonal flows near the avoided level
crossing (Fig. 20). The width of the paramagnetic stripe
of current increases to give a two dimensional pattern of
local currents when U → 0 and W/t ≈ 1, the sign of I
becoming sample dependent.

9.4 Φ0, Φ0/2 and Φ0/3 harmonics of I(Φ)

To study more precisely how melts the Wigner molecule
when U → 0 in a disordered sample where L = 9,
t = W = 1, we give in Figure 22 Il as a function of Φ,
for the values of U where one expects the end of the
Fermi glass (U = 5), a disordered supersolid (U = 15)
and the continuum CGSC-regime (U = 50) respectively.
For large U , Leggett’s rule gives a diamagnetic molecule
of N = 3 particles, when the dynamics remains inside a 1d
stripe. This rule is indeed observed for U = 50 where Il(Φ)
exhibits an amplitude as large as for weaker interactions

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

I l

Φ/Φ0

U=5
U=15
U=50

Fig. 22. Il as a function of Φ/Φ0 for a disordered sample with
N = 3, L = 9, W = 1 and t = 1 and three values of U . The
negative (positive) currents are paramagnetic (diamagnetic)
for an infinitesimal positive flux. One can see a change of sign
between U = 15 and U = 50.

with no trace of other characteristic period than Φ0. In
contrast, the curves obtained for U = 15 and U = 5 have
reacher harmonic structures.

Il(Φ) is an odd function of Φ (Il(Φ) = −I(Φ)) of pe-
riod Φ0 which can be expanded as:

Il(Φ) =
√

2
∞∑

n=1

In sin
(

2πn
Φ

Φ0

)
(82)

where the Fourier components In are

In =
∫ Φ0

0

Il(Φ)
√

2 sin
(

2πn
Φ

Φ0

)
dΦ. (83)

We give in Figures 23 and 24 the Φ0, Φ0/2 and
Φ0/3 harmonics of Il(Φ) as a function of rs for two dis-
ordered samples of size L = 6 and 9 respectively, with
W = t = 1. These harmonics, mainly I1 and I2, give the
largest contributions. One can see that they are negative
(paramagnetic) up to rF

s . Around rF
s , I3 becomes positive,

to reach a maximum for rs ≈ 25 where I1 ≈ 0. Above
rs ≈ 25, the odd harmonics I1 and I3 are diamagnetic,
while the even harmonic I2 remain paramagnetic. This is
what Leggett’s rule gives if each In was due to a n body
motion in one dimension. This allows us to give for each
sample the characteristic values where the current topol-
ogy becomes one dimensional and Leggett’s rule applies.
For U ≈ 40 in the sample shown in Figure 24, the diamag-
netic I1 is maximum while the two others are negligible,
and one has the continuum stripe (CGS-regime) shown in
Figure 19. The period Φ0 should be expected for a contin-
uum disordered stripe, a L/3, L/3 translation of each of
the 3 particles being equivalent to have a single particle
enclosing Φ0.

10 Summary

Considering only N = 3 spinless fermions in a 2d square
lattice with random potentials, we have obtained many
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Fig. 23. Harmonics In characterizing the period Φ0/n of the
longitudinal current Il(Φ) as a function of rs for a disordered
sample with N = 3, L = 6, W = 1 and t = 1.
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Fig. 24. Harmonics In characterizing the period Φ0/n of the
longitudinal current Il(Φ) as a function of rs for a disordered
sample with N = 3, L = 9, W = 1 and t = 1.

different regimes by increasing the strength U of the elec-
tronic correlations. Studying how I depends on the system
parameters, we have distinguished the continuum regimes
from the lattice regimes. Increasing U in a disordered sam-
ple of size L, we have studied the effect of electronic cor-
relations in the ballistic, diffusive and localized regimes
without interaction. Looking at the map of local currents
induced by a flux Φ, we have identified two regimes rem-
iniscent of phases discussed in other fields, the stripes in
the theory of strongly correlated electrons and the super-
solids in the theory of quantum solids.

In the regime of the current stripe, the observed diag-
onal motion is clearly characteristic of the oblique shape
of the Wigner molecule with N = 3. For larger N , it is
likely that one has a regime where the current flows along
the axes of the Wigner crystal. If those axes form an an-
gle with the shortest direction enclosing the flux, the ratio
It/Il �= 0. When the electron crystal is pinned by disorder,
this suggests that one can have an anisotropic resistivity
tensor inside a certain range of density. Similar behaviors
are observed in cuprate oxides with high temperature su-
perconductivity in a certain range of chemical doping and
in 2DEGs under high perpendicular magnetic fields. More

directly related to our problem, the existence of stripe
phases in 2DEGs is also discussed in reference [31].

The nature of the intermediate regime between the
solid and the liquid is a more delicate issue. We suggest
that one could have a “supersolid”. This concept was in-
troduced long ago to describe the quantum melting of
3d quantum solids at very low temperature when the pres-
sure is varied. Decades of studies of Helium-3 (fermions) or
Helium-4 (bosons) atoms have not allowed to reach a firm
conclusion. Very recent experiments by Kim and Chan
in solid Helium-4 [32–35] can be interpreted as an obser-
vation of an apparent superfluid component, suggesting
that a melting solid could have a supersolid fraction at
certain intermediate pressures. For electrons in two di-
mensions, a supersolid phase is a possibility mentioned in
references [8,9]. One can also mention other possibilities.
For instance a quantum liquid crystal [5] (quantum hex-
atic phase), in analogy with the thermal melting of an
electron crystal of very large rs. Clearly, more works are
needed to understand more precisely the exact nature of
the 2DEG at intermediate values of rs. Let us conclude by
summarizing three facts characterizing the intermediate
values of rs: (i) the existence of an unexpected 2d-metallic
behavior given by transport measurements, (ii) the partic-
ular maps of local persistent currents obtained in exact nu-
merical studies using a few spinless fermions, obtained in
this work or in references [4–9], (iii) the results of a recent
fixed node Monte Carlo study [15] using N ≈ 50−200 spin-
less fermions and extrapolated to the limit N → ∞ which
show that the nodal structure of a Slater determinant of
delocalized Bloch waves gives a smaller GS energy than
the trial wave-functions previously used to describe either
a pure solid or a pure liquid, for intermediate values of rs

(30 < rs < 80).
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